Cardiac sarcoplasmic-reticulum calmodulin-binding proteins. Modulation of calmodulin binding to phospholamban by phosphorylation.
نویسندگان
چکیده
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.
منابع مشابه
Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.
Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-depe...
متن کاملTargeted inhibition of Ca2+/calmodulin-dependent protein kinase II in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17.
To investigate the role of Ca2+/calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca2+/calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in ...
متن کاملSite-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum.
Wheat germ calmodulin (CaM) was derivatized at its single cysteine (Cys27) with either the fluorescent reagent, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (I-EDANS) or the photoactivable cross-linker benzophenone-4-maleimide. Comparison of the native and derivatized wheat germ CaMs with native bovine testis CaM indicates that the concentrations of these proteins required for half-...
متن کاملStudies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase.
Two endogenous protein kinase activities, cAMP-dependent and calmodulin-Ca2+-dependent, are associated with isolated cardiac sarcoplasmic reticulum (SR) vesicles. Both kinases phosphorylate an endogenous substrate of approximately 22,000 daltons (phospholamban). The phosphorylation of phospholamban by either the intrinsic or by exogenous cAMP-dependent protein kinase is found to be Ca2+-indepen...
متن کاملTargeted Inhibition of Ca /Calmodulin-dependent Protein Kinase II in Cardiac Longitudinal Sarcoplasmic Reticulum Results in Decreased Phospholamban Phosphorylation at Threonine 17*
To investigate the role of Ca /calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca /calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 226 3 شماره
صفحات -
تاریخ انتشار 1985